If the expression x^{-\frac{3}{2}}y\sqrt{36xy^2}x − 2 3 ​ y 36xy 2 ​ is written in the form ax^by^cax b y c , then what is the product of a,a, bb and cc?

Respuesta :

Answer:

-12

Step-by-step explanation:

The given expression is

[tex]x^{-\frac{3}{2}}y\sqrt{36xy^2}[/tex]

We have to rewrite the given function in the form of  

[tex]ax^{b}y^c[/tex]          ....(i)

then we have to find the product of a,b and c.

The given expression can be rewritten as

[tex]x^{-\frac{3}{2}}y\sqrt{36}\sqrt{x}\sqrt{y^2}[/tex]

Using properties of exponents we get

[tex]x^{-\frac{3}{2}}y6x^{\frac{1}{2}}y[/tex]       [tex][\because \sqrt[n]{a}=a^{\frac{1}{n}}][/tex]

[tex]6x^{-\frac{3}{2}+\frac{1}{2}}y^{1+1}[/tex]      [tex][\because a^ma^n=a^{m+n}][/tex]

[tex]6x^{-1}y^{2}[/tex]      ...(ii)

On comparing (i) and (ii), we get

[tex]a=6,b=-1,c=2[/tex]

Product of a,b and c is

[tex]abc=(6)(-1)(2)=-12[/tex]

Therefore, the product of a,b, and c is -12.