Steam enters a turbine operating at steady state at 2 MPa, 323 °C with a velocity of 65 m/s. Saturated vapor exits at 0.1 MPa and a velocity of 42 m/s. The elevation of the inlet is 4 m higher than at the exit. The mass flow rate of the steam is 7 kg/s, and the power developed is 8 MW. Let g = 9.81 m/s2. Determine the rate of heat transfer between the turbine and its surroundings, in kW.

Respuesta :

Answer:

[tex]\dot Q_{out} = 13369.104\,kW[/tex]

Explanation:

The turbine is modelled after the First Law of Thermodynamics:

[tex]-\dot Q_{out} - \dot W_{out} + \dot H_{in} - \dot H_{out} + \dot K_{in} - \dot K_{out} + \dot U_{in} - \dot U_{out} = 0[/tex]

The rate of heat transfer between the turbine and its surroundings is:

[tex]\dot Q_{out} = \dot H_{in}-\dot H_{out} + \dot K_{in} - \dot K_{out} - \dot W_{out} + \dot U_{in} - \dot U_{out}[/tex]

The specific enthalpies at inlet and outlet are, respectively:

[tex]h_{in} = 3076.41\,\frac{kJ}{kg}[/tex]

[tex]h_{out} = 2675.0\,\frac{kJ}{kg}[/tex]

The required output is:

[tex]\dot Q_{out} = \left(8\,\frac{kg}{s} \right)\cdot \left\{3076.41\,\frac{kJ}{kg}-2675.0\,\frac{kJ}{kg}+\frac{1}{2}\cdot \left[\left(65\,\frac{m}{s} \right)^{2}-\left(42\,\frac{m}{s} \right)^{2}\right] + \left(9.807\,\frac{m}{s^{2}} \right)\cdot (4\,m) \right\} - 8000\,kW[/tex][tex]\dot Q_{out} = 13369.104\,kW[/tex]