Respuesta :

As according to given diagram:

AC= 7cm and AB=25 cm and CB= 24 cm.

SO according to triangle ABC:

[tex]\begin{gathered} \sin (\angle CAB)=\frac{CB}{AB} \\ \sin (\angle CAB)=\frac{24}{25} \\ \sin (\angle CAB)=0.96 \\ (\angle CAB)=\sin ^{-1}(0.96) \\ (\angle CAB)=73.7 \end{gathered}[/tex]

Now given that Angle CAD and BAD are equal so:

[tex]\angle CAD=\angle BAD=\frac{\angle CAB}{2}=\frac{73.7}{2}=36.85[/tex]

Now in triangle ACD:

[tex]\begin{gathered} \tan (\angle CAD)=\frac{CD}{AC} \\ 7\times\tan (36.85)=CD \\ CD=5.246 \end{gathered}[/tex]

And :

[tex]undefined[/tex]