Respuesta :

Given:

The graph of the parabola id given.

[tex]\begin{gathered} \text{For the parabola ax}^2+bx+c\text{ with vertex (h,k)} \\ \text{If a<0},\text{ range is f(x)}\leq k \\ \text{If a>0, range is f(x)}\ge k \end{gathered}[/tex]

The equation of the graph of the parabola is represents in the form,

[tex]\begin{gathered} y=a(x-h)^2+k \\ (h,k)=\text{vertex} \end{gathered}[/tex]

The graph is maximum at ( 5,-1).

The range of the function is set of all output values.

So, the range is,

[tex]-\infty