Respuesta :

Given the right traingle with side lengths:

d, e, and f

Let's find cosx, sinx, and tanx.

From the given figure, we have:

Opposite side which is the side opposite the given angle(x) = d

Adjacent side which is the side adjacent the given angle (x) = e

Hypotenuse which is the longest side of the triangle = f

θ which is the given angle = x

To solve this, we are to apply trigonometric ratio formula for each of the following.

Thus, we have:

• a) cos x:

Apply the trigonometric ratio formula for cosine:

[tex]\cos \theta=\frac{adjacent}{\text{hypotenuse}}[/tex]

Substitute the values into the equation:

[tex]\cos x=\frac{e}{f}[/tex]

• b) sinx:

Apply the tigonometric ratio formula for sine:

[tex]\sin \theta=\frac{\text{opposite}}{\text{hypotenuse}}[/tex]

Substitute the variables into the equation:

[tex]\sin x=\frac{d}{f}[/tex]

• c) tanx:

Apply the trigonometric ratio formula for tan:

[tex]\tan \theta=\frac{\text{opposite}}{\text{adjacent}}[/tex]

Substitute the variables into the equation:

[tex]\tan x=\frac{d}{e}[/tex]

ANSWER:

[tex]\begin{gathered} \cos x=\frac{e}{f} \\ \\ \\ \sin x=\frac{d}{f} \\ \\ \\ \tan x=\frac{d}{e} \end{gathered}[/tex]