Respuesta :

We start by solving the following expression:

[tex](-\frac{3}{4})(\frac{7}{8})[/tex]

To multiply fractions we follow this rule:

[tex](\frac{a}{b})(\frac{c}{d})=\frac{a\times c}{b\times d}[/tex]

So we do this with the expression:

[tex](-\frac{3}{4})(\frac{7}{8})=-\frac{3\times7}{4\times8}[/tex]

Solving the operations:

[tex](-\frac{3}{4})(\frac{7}{8})=-\frac{21}{32}[/tex]

Now we solve another of the expressions:

[tex](\frac{2}{3})(-4)(9)[/tex]

In this case, we can solve the multiplication between 4 and 9 first:

[tex](\frac{2}{3})(-4)(9)=(\frac{2}{3})(-36)[/tex]

And we consider that the rule to multiply a fraction by an integer is:

[tex](\frac{a}{b})(c)=\frac{a\times c}{b}[/tex]

So in this case:

[tex](\frac{2}{3})(-4)(9)=\frac{2(-36)}{3}[/tex]

And we solve the operations:

[tex]\begin{gathered} (\frac{2}{3})(-4)(9)=\frac{-72}{3} \\ (\frac{2}{3})(-4)(9)=-24 \end{gathered}[/tex]

Next, we will solve the expression:

[tex](\frac{5}{16})(-2)(-4)(-\frac{4}{5})[/tex]

In this case, we can also multiply the integers first, note that (-2)(-4) will be a positive number because we multiply two minus signs, so we get:

[tex](\frac{5}{16})(-2)(-4)(-\frac{4}{5})=(\frac{5}{16})(8)(-\frac{4}{5})[/tex]

Now we multiply the first fraction by the integer following the same rule as in the last expression:

[tex]\begin{gathered} (\frac{5}{16})(-2)(-4)(-\frac{4}{5})=(\frac{5\times8}{16})(-\frac{4}{5}) \\ (\frac{5}{16})(-2)(-4)(-\frac{4}{5})=(\frac{40}{16})(-\frac{4}{5}) \end{gathered}[/tex]

Now we multiply the fractions:

[tex]\begin{gathered} (\frac{5}{16})(-2)(-4)(-\frac{4}{5})=(\frac{40}{16})(-\frac{4}{5}) \\ (\frac{5}{16})(-2)(-4)(-\frac{4}{5})=-\frac{40\times4}{16\times5} \\ (\frac{5}{16})(-2)(-4)(-\frac{4}{5})=-\frac{160}{80} \end{gathered}[/tex]

And the final result for this expression is:

[tex](\frac{5}{16})(-2)(-4)(-\frac{4}{5})=-2[/tex]

Now we solve the last expression:

[tex](2\frac{3}{5})(\frac{7}{9})[/tex]

in this expression, we have a mixed number which we need to convert to a fraction, the procedure to convert it is as follows:

[tex]2\frac{3}{5}=\frac{2\times5+3}{5}=\frac{13}{5}[/tex]

We substitute this in our expression:

[tex](2\frac{3}{5})(\frac{7}{9})=(\frac{13}{5})(\frac{7}{9})[/tex]

And multiply the fractions to get the final result:

[tex]\begin{gathered} (2\frac{3}{5})(\frac{7}{9})=\frac{13\times7}{5\times9} \\ (2\frac{3}{5})(\frac{7}{9})=\frac{91}{45} \end{gathered}[/tex]