Titanium is a metal used to make golf clubs. A rectangular bar of this metal measuring 1.96 cm x 2.19 cm x 2.63 cm was found to have a mass of 45.3 g. What is the density of titanium in g/cm3?

Respuesta :

[tex]4.012\frac{gr}{cm^3}[/tex]

Explanation

the density of an object is given by:

[tex]\text{Density(d)}=\frac{mass(m)}{\text{volume(v)}}[/tex]

Step 1

find the volume of the bar

a)find the volume of the rectangular bar.

the volume of a rectangular prism is given by:

[tex]\text{Volume}=\text{ length}\cdot widht\cdot depth[/tex]

replace

[tex]\begin{gathered} \text{Volume}=(\text{ 2.63}\cdot2.19\cdot1.96)(cm^3) \\ \text{Volume}=11.289012(cm^3) \end{gathered}[/tex]

Step 2

now,

Let

[tex]\begin{gathered} \text{Volume}=11.289012(cm^3) \\ \text{mass}=\text{ 45.3 gr} \end{gathered}[/tex]

replace in the formula

[tex]\begin{gathered} \text{Density(d)}=\frac{mass(m)}{\text{volume(v)}} \\ d=\frac{45.3\text{ gr}}{11.289012(cm^3)} \\ d=4.012\frac{gr}{cm^3} \end{gathered}[/tex]

therefore, the answer is

[tex]4.012\frac{gr}{cm^3}[/tex]

I hope this helps you

Ver imagen AyeshaW105478