Respuesta :

SOLUTION

Write out ythe expression

Let

[tex]u=x^3-5x-8[/tex]

Differrentiate u with respect to x

[tex]\begin{gathered} \frac{du}{dx}=3x^2-5 \\ \text{Then} \\ dx=\frac{du}{3x^2-5} \end{gathered}[/tex]

Then, substitute into the expression above

[tex]\int \frac{-3x^2+5}{x^3-5x-8}dx=\int \frac{-3x^2+5}{u}\times\frac{du}{3x^2-5}[/tex]

Then

[tex]\begin{gathered} \int \frac{-(3x^2-5)}{u}\times\frac{du}{3x^2-5} \\ \text{Divide the common factor } \\ \int -\frac{1}{u}du \end{gathered}[/tex]

Apply the rule

[tex]\begin{gathered} \int a\cdot f\mleft(x\mright)dx=a\cdot\int f\mleft(x\mright)dx \\ \text{Then} \\ \int -\frac{1}{u}du=-\int \frac{1}{u}du \end{gathered}[/tex]

Then use the common integral rule

[tex]\int \frac{1}{u}du=\ln \mleft(\mleft|u\mright|\mright)[/tex]

Replace the expression for u, we have

[tex]-\ln (|u|)=-\ln \mleft|x^3-5x-8\mright|+C[/tex]

Therefore

The solution becomes

- ln |x³-5x - 8 | +C

Ver imagen QaysS555002