Answer:
n/3, 5n/3
Explanation:
Given the equation:
[tex]-12\cos x+6=0,\lbrack0,2\pi)[/tex]Subtract 6 from both sides:
[tex]\begin{gathered} -12\cos x+6-6=0-6 \\ -12\cos x=-6 \end{gathered}[/tex]Next, divide both sides by -12:
[tex]\begin{gathered} \frac{-12\cos x}{-12}=-\frac{6}{-12} \\ \cos x=0.5 \end{gathered}[/tex]Finally, solve for x in the interval [0, 2n).
[tex]\begin{gathered} x=\arccos (0.5) \\ x=\frac{\pi}{3} \\ x=2\pi-\frac{\pi}{3}=\frac{5\pi}{3} \end{gathered}[/tex]The first choice is correct.