Respuesta :

Given the sequence: 5,15,45,135

In general, the sequence for the n-th term is given by:

[tex]a_n=a_1\cdot r^{n-1}[/tex]

Where:

r = common ratio

a1 = first term

Therefore:

[tex]\begin{gathered} a_1=5 \\ r=\frac{15}{5}=3 \end{gathered}[/tex]

And we find a6:

Substitute a1 and r in the formula

[tex]a_6=5\cdot3^{6-1}=5\cdot3^5=5\cdot243=1215[/tex]

Answer: a6 = 1215