Respuesta :

we have the polar equation

[tex]r=5sin(4\theta)[/tex]

using a graphing tool

The arc length is given by the formula

[tex]L=\int_a^b\sqrt{(r^{\prime}(\theta)^2+(r(\theta))^2}\text{ }d\theta[/tex]

where

Find out r' (a derivative of r)

[tex]r^{\prime}(\theta)=20cos(4\theta)[/tex]

a=0

b=pi/4

substitute given values in the formula

[tex]\begin{gathered} L=\int_0^{\frac{pi}{4}}\sqrt{(20cos(4\theta))^2+(5sin(4\theta))^2}\text{d}\theta \\ L=\int_0^{\frac{pi}{4}}\sqrt{400cos^2(4\theta)+25sin^2(4\theta)}\text{d}\theta \end{gathered}[/tex]

Solve the integral

The answer is

one minute, please

The arc length is L=10.723 units (three decimal places)

Ver imagen JayvinP750675
Ver imagen JayvinP750675