Respuesta :

Given:

Find-: Probability that a randomly selected person was either female or was wearing brown shoes.

Sol:

The probability that the randomly selected person was female.

Total female :

[tex]\begin{gathered} =4+11+16+2 \\ =33 \end{gathered}[/tex]

Total = male +female

[tex]\begin{gathered} =31+33 \\ =64 \end{gathered}[/tex]

Probability:

[tex]\begin{gathered} P(A)=\frac{\text{Favorable conditions}}{\text{ total conditions}} \\ P(A)=\frac{33}{64} \end{gathered}[/tex]

The probability that a randomly selected person was wearing brown shoes.

Total brown shoes:

[tex]\begin{gathered} =7+11 \\ =18 \end{gathered}[/tex]

Total shoes:

[tex]=64[/tex]

Probability :

[tex]P(B)=\frac{18}{64}[/tex]

The probability that a randomly selected person was either female or was wearing brown shoes.

[tex]\begin{gathered} P=P(A)+P(B) \\ =\frac{33}{64}+\frac{18}{64} \\ =\frac{51}{64} \\ =0.797 \end{gathered}[/tex]

So the probabili

Ver imagen KendylM419409