which expression is equivalent to 2x√44x-2√11x^3 if x>0? 0a. 2x√11x 0b.6x√22x 0c.2x 0d.8x^2√11

Solution
For this case we have this:
[tex]2x\sqrt[]{44x}-2\sqrt[]{11x^3}=2(x\sqrt[]{44x}-\sqrt[]{11x^3})[/tex]And then we can do this:
[tex]2(\sqrt[]{44x^3}-\sqrt[]{11x^3})=2(\sqrt[]{4\cdot11x^3}-\sqrt[]{11x^3})=2(2\sqrt[]{11x^3}-\sqrt[]{11x^3})[/tex]and taking common factor we got:
[tex](4-2)(\sqrt[]{11x^3})=2\sqrt[]{11x^3}=2\sqrt[]{11x\cdot x^2}=2x\sqrt[]{11x}[/tex]