Respuesta :

As given by the question

There are given that the value of sides and angle:

[tex]a=28,\text{ b=47, and m}\angle C=98^{\circ}[/tex]

Now,

From the cosine rule:

[tex]c^2=b^2+a^2-2ab\cos C[/tex]

Then,

[tex]c^2=47^2+28^2-2\times28\times47\cos 98[/tex]

Then,

[tex]\begin{gathered} c^2=47^2+28^2-2\times28\times47\cos 98 \\ c^2=2209+784-2632\times\cos 98^{\circ} \\ c^2=2209+784+366.30 \\ c^2=3359.3 \end{gathered}[/tex]

Then,

[tex]\begin{gathered} c^2=3359.3 \\ c^{}=\sqrt{3359.3} \\ c=57.959 \\ c=58 \end{gathered}[/tex]

Hence, the value of c is 58.

Answer:

58

Step-by-step explanation: