Respuesta :

Given:

[tex]f(x)=x\text{ and }g(x)=\frac{2}{9}x-2[/tex]

Required:

We need to find the transformation from f(x) to g(x).

Explanation:

Consider the function f(x).

[tex]f(x)=x[/tex]

Set x=0 and substitute in the function f(x).

[tex]f(0)=0[/tex]

We get the point (0,0).

Set x =9 and substitute in the function f(x).

[tex]f(9)=9[/tex]

We get the point (9,9).

Mark the point (0,0) and (9,9) and join them by a ray.

Consider the function g(x).

[tex]g(x)=\frac{2}{9}x-2[/tex]

Set x=0 and substitute in the function g(x).

[tex]g(0)=\frac{2}{9}(0)-2=-2[/tex]

We get the point (0,-2).

Set x=9 and substitute in the function g(x).

[tex]g(9)=\frac{2}{9}(9)-2=2-2=0[/tex]

We get the point (9,0).

Mark the points (0,-2) and (9,0) on the graph and join them by a ray.

The point on f(x) is (9,9)

The point on g(x) is (9,0).

Conisder the function

[tex]f(x)=x[/tex]

Multiply x sides by 2/9, it rotates the line f9x)=x.

[tex]f_1(x)=\frac{2}{9}x[/tex]

Subtract 2 from the whole function, it shifts down by 2 units.

[tex]g(x)=\frac{2}{9}x-2[/tex]

Final answer:

The transformation is rotated and translated.

Ver imagen SyaireS50828
Ver imagen SyaireS50828