hello. thanks for viewing my question. im totally stuck on this

We can find the area of the rectangle and then subtract the area of the semicircles to find the area of the paper that remains. Both semicircles form a circle. Then, we have:
[tex]A=A1-A2[/tex]The formula to find the area of a rectangle is:
[tex]A_{\text{ rectangle}}=\text{ length }\cdot\text{ width}[/tex]Then, we have:
[tex]\begin{gathered} A1=34cm*16cm \\ A1=544cm^2 \end{gathered}[/tex]The formula to find the area of a circle is:
[tex]\begin{gathered} A_{\text{ circle}}=\pi r^2 \\ \text{ Where} \\ \text{r is the radius of the circle} \end{gathered}[/tex]The radius is half of the diameter. Then, we have:
[tex]\begin{gathered} \text{ radius }=\frac{\text{ diameter}}{2} \\ \text{rad}\imaginaryI\text{us}=\frac{16cm}{2} \\ \text{rad}\imaginaryI\text{us}=8cm \end{gathered}[/tex][tex]\begin{gathered} A2=\pi r^2 \\ A2=\pi(8cm)^2 \\ A2=64\pi cm^2 \end{gathered}[/tex]The area of the paper that remains rounding the nearest hundredth is 342.94 cm².