Determine whether the statement is true or false. Iftrue, explain why. If false, provide a counterexample.

Given:
[tex]\sqrt[]{x+y}[/tex]Let
[tex]\sqrt[]{x+y}=\sqrt[]{x}+\sqrt[]{y}[/tex]So square of both side is:
[tex]\begin{gathered} \sqrt[]{x+y}=\sqrt[]{x}+\sqrt[]{y} \\ \text{squre f both side:} \\ (\sqrt[]{x+y})^2=(\sqrt[]{x}+\sqrt{y})^2 \\ x+y=x+y+2\sqrt[]{xy} \end{gathered}[/tex]Here :
[tex]\sqrt[]{x+y}\ne\sqrt[]{x}+\sqrt[]{y}[/tex]So the given statement is is false.