Respuesta :

Given:

[tex]\sqrt[]{x+y}[/tex]

Let

[tex]\sqrt[]{x+y}=\sqrt[]{x}+\sqrt[]{y}[/tex]

So square of both side is:

[tex]\begin{gathered} \sqrt[]{x+y}=\sqrt[]{x}+\sqrt[]{y} \\ \text{squre f both side:} \\ (\sqrt[]{x+y})^2=(\sqrt[]{x}+\sqrt{y})^2 \\ x+y=x+y+2\sqrt[]{xy} \end{gathered}[/tex]

Here :

[tex]\sqrt[]{x+y}\ne\sqrt[]{x}+\sqrt[]{y}[/tex]

So the given statement is is false.