f(x) = x2 + 6x, g(x) = x + 4(g ∘ f)(2)

Given,
The expression is:
f(x) = x^2 + 6x
g(x) = x + 4
Required:
The value of (g ∘ f)(2).
The value of (g ∘ f)(x)
[tex]\begin{gathered} \left(g∘f\right)\left(x\right)=g(f(x)) \\ =g(x^2+6x) \\ =x^2+6x+4 \end{gathered}[/tex]The value of (g ∘ f)(x) is x^2+6x+4.
The value of (g ∘ f)(2) is,
[tex]\begin{gathered} \left(g∘f\right)\left(x\right)=x^2+6x+4 \\ (g∘f)(2)=2^2+6(2)+4 \\ =4+12+4 \\ =20 \end{gathered}[/tex]Hence, the value of (g ∘ f)(2) is 20.