Respuesta :

Given:

[tex]\begin{gathered} f(x)=x+3 \\ g(x)=-3x-1 \end{gathered}[/tex]

To Deermine

[tex](\frac{f}{g})(-1)[/tex]

Solution

[tex]\begin{gathered} Determine\text{ \lparen}\frac{f}{g})(x) \\ (\frac{f}{g})(x)=\frac{f(x)}{g(x)} \\ (\frac{f}{g})(x)=\frac{x+3}{-3x-1} \end{gathered}[/tex][tex]\begin{gathered} (\frac{f}{g})(-1)=\frac{-1+3}{-3(-1)-1} \\ (\frac{f}{g})(-1)=\frac{2}{3-1} \\ (\frac{f}{g})(-1)=\frac{2}{2}=1 \end{gathered}[/tex]

Hence, (f/g)(-1) = 1