Respuesta :

SOLUTION:

Case: Trigonometry (Quadrants)

Given:

[tex]\begin{gathered} sinA=\text{ -}\frac{4}{5} \\ In\text{ quadrant 3} \end{gathered}[/tex]

Required:

Find sin (2A)

Method:

Step 1: First we find the acute angle A, that sinA = 4/5

[tex]\begin{gathered} sinA=\frac{\text{ 4}}{5} \\ A=\text{ }\sin^{-1}(\frac{4}{5}) \\ A=\text{ 53.13} \end{gathered}[/tex]

From here,

CosA is:

[tex]\begin{gathered} cosA=\text{ }\frac{adj}{hyp} \\ using\text{ the 3-4-5 pythagoras rule, adj=3} \\ cosA=\text{ }\frac{3}{5} \end{gathered}[/tex]

Step 2: Rotate the angle into the 3rd quadrant

A*= 53.13 + 180

A*= 233.13.

Step 3: Sin (2A)

[tex]\begin{gathered} sin(2A)=\text{ 2sinAcosA} \\ sin(2A)=\text{ 2}\times\text{\lparen}\frac{-4}{5}\text{\rparen}\times(\frac{\text{-3}}{5}\text{\rparen} \\ sin(2A)=\frac{\text{ 24}}{25} \end{gathered}[/tex]

Final answer:

The value of sin(2A)= 24/25