If p varies directly as q and p=9.6 when q=3, find the equation that relates p and q.

p varies directly as q,
Mathematically,
[tex]p\propto q[/tex]Let us now introduce a constant k,
[tex]\begin{gathered} p\propto kq \\ p=kq \end{gathered}[/tex]Let us now substitute the values of p and q into the equation and solve for k.
[tex]\begin{gathered} p=9.6 \\ q=3 \end{gathered}[/tex][tex]\begin{gathered} 9.6=k\times3 \\ 9.6=3k \end{gathered}[/tex][tex]\begin{gathered} \text{divide both sides by 3}, \\ \frac{3k}{3}=\frac{9.6}{3} \\ k=3.2 \end{gathered}[/tex]Let us now substitute 3.2 for k back into the equation inorder to get the equation that relates p and q.
Hence, the equation that relates p and q is,
[tex]p=3.2q[/tex]