The Solution:
The given figure is:
[tex]V=\pi r^2h[/tex]First, we shall find the value of the radius of the cylinder.
[tex]\begin{gathered} =\frac{d}{2} \\ \text{ where} \\ r=\text{radius}=\text{?} \\ d=\text{diameter}=12\text{ ft} \\ \text{ So,} \\ \text{Substituting 12 for d, we get} \\ r=\frac{12}{2}=6\text{ ft} \end{gathered}[/tex]To find the volume of the given cylindrical tank above, we shall use the formula below:
[tex]V=\pi r^2h[/tex]In this case,
[tex]\begin{gathered} \pi=3.14\text{ (given)} \\ r=\text{radius}=6\text{ ft} \\ h=\text{height}=9ft \\ V=Volume=? \end{gathered}[/tex]Substituting these values in the formula above, we get
[tex]V=3.14\times6^2\times9=3.14\times36\times9=1017.36\approx1017ft^2[/tex]Therefore, the correct answer is 1017 squared feets