Respuesta :

Answer:

The dialation is of -(1/9)

Step-by-step explanation:

I will write a matrix for the triangle before dialation. It is:

[tex]B=\begin{bmatrix}{72} & {9} & {-108} \\ {72} & {108} & {-27}\end{bmatrix}[/tex]

The matrix after the dailation is:

[tex]A=\begin{bmatrix}{-8} & {-1} & {12} \\ {-8} & {-12} & {3}{}\end{bmatrix}[/tex]

The relationship between the matrix is:

[tex]A=Bx[/tex]

In which x is the dilation.

So

[tex]\begin{bmatrix}{-8} & {-1} & {12} \\ {-8} & {-12} & {3}\end{bmatrix}=\begin{bmatrix}{72} & {9} & {-108} \\ {72} & {108} & {-27}\end{bmatrix}x[/tex]

Taking two elements at the same position, i will take the first ones:

[tex]-8=72x[/tex]

Now we find the dilation x.

[tex]x=-\frac{8}{72}=-\frac{1}{9}[/tex]

The dialation is of -(1/9)