Respuesta :

If we have the lenght of the sides, the ratio of the smaller pentagon and the larger pentagon is:

[tex]\frac{28}{35}=\frac{4}{5}[/tex]

As in the area we work with 2 dimensions, the ratio is:

[tex](\frac{4}{5})^2=\frac{4^2}{5^2}=\frac{16}{25}[/tex]

The smaller pentagon has 232 m^2, then:

[tex]\frac{16}{25}=\frac{232}{x}[/tex]

x represents the area of the larger pentagon

[tex]16x=232\cdot25[/tex][tex]x=\frac{232\cdot25}{16}[/tex][tex]x=362.5[/tex]

The area of the larger pentagon is 362.5 m^2