Respuesta :

Step 1

Given :

[tex]f(x)=x^2[/tex]

Required:

[tex]To\text{ shrink by a factor of }\frac{1}{2},\text{ shift 3 units right and 2 units up.}[/tex]

The question did not state clearly if we are to shrink vertically or horizontally. So we will attend to both.

Step 2

A vertical shrink by a factor of 1/2

[tex]\begin{gathered} f(x)=x^2 \\ f(x)\text{ = }\frac{1}{2}x^2 \end{gathered}[/tex]

Step 3

A vertical shrink by a factor of 1/2 and a shift 3 units to the right

[tex]f(x)=\frac{1}{2}(x-3)^2[/tex]

Step 4

A vertical shrink by a factor of 1/2, a shift 3 units to the right, and a shift of 2 units up

[tex]f(x)=\text{ }\frac{1}{2}(x-3)^2+2[/tex]

Step 5

A horizontal shrink by a factor of 1/2

[tex]f(x)\text{ = }2x^2[/tex]

Step 6

A horizontal shrink by a factor of 1/2 and a shift 3 units to the right

[tex]f(x)=2(x-3)^2_{}[/tex]

Step 7

A horizontal shrink by a factor of 1/2, a shift 3 units to the right, and a shift of 2 units up

[tex]f(x)=2(x-3)^2+2[/tex]

Hence the answer will be

If the shrink is vertical by a factor of 1/2, a shift 3 units to the right, and a shift of 2 units up ;

[tex]f(x)=\text{ }\frac{1}{2}(x-3)^2+2[/tex]

If the shrink is horizontal by a factor of 1/2, a shift 3 units to the right, and a shift of 2 units up ;

[tex]f(x)=2(x-3)^2+2[/tex]