Respuesta :

Answer:

• x-intercept = 10

,

• y-intercept = 10/3

Explanation:

Given the points​:

[tex]\begin{gathered} (x_1,y_1)=(1,3) \\ \mleft(x_2,y_2\mright)=\mleft(-2,4\mright) \end{gathered}[/tex]

First, determine the equation of the line using the two-point form:

[tex]\begin{gathered} \frac{y-y_1}{x-x_1}=\frac{y_2-y_1}{x_2-x_1} \\ \frac{y-3}{x-1}=\frac{4-3}{-2-1} \\ \frac{y-3}{x-1}=\frac{1}{-3} \\ -3(y-3)=x-1 \\ -3y+9=x-1 \\ x+3y=9+1 \\ x+3y=10 \end{gathered}[/tex]

Next, express it in the intercept form:

[tex]\begin{gathered} \frac{x}{10}+\frac{3y}{10}=\frac{10}{10} \\ \frac{x}{10}+\frac{y}{\frac{10}{3}}=1 \end{gathered}[/tex]

Therefore, the intercepts are:

• x-intercept = 10

,

• y-intercept = 10/3

,