Can you please help me with this math problem. Thank you a)b) How many seconds for the ball to hit the moons surface ?

Height of the ball:
[tex]s=-2.7t^2+30t+6.5[/tex]a) Find t for a height (s) of 20ft:
[tex]\begin{gathered} s=20 \\ -2.7t^2+30t+6.5=20 \end{gathered}[/tex]Solve t:
1. Subtract 20 in both sides of the equation:
[tex]\begin{gathered} -2.7t^2+30t+6.5-20=20-20 \\ \\ -2.7t^2+30t-13.5=0 \end{gathered}[/tex]2. Use quadratic formula to solve t:
[tex]\begin{gathered} ax^2+bx+c=0 \\ \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \end{gathered}[/tex][tex]\begin{gathered} t=\frac{-30\pm\sqrt[]{30^2-4(-2.7)(-13.5)}}{2(-2.7)} \\ \\ t=\frac{-30\pm\sqrt[]{900-145.8}}{-5.4} \\ \\ t=\frac{-30\pm\sqrt[]{754.2}}{-5.4} \\ \\ t_1=\frac{-30+\sqrt[]{754.2}}{-5.4}=0.47 \\ \\ t_2=\frac{-30-\sqrt[]{754.2}}{-5.4}=10.64 \end{gathered}[/tex]b) The ball will hit the moon's surface when its height is 0ft.
Use the given function for the height of the ball and solve t when s=0:
[tex]\begin{gathered} s=0 \\ -2.7t^2+30t+6.5=0 \\ \end{gathered}[/tex]Find t using quadratic formula:
[tex]\begin{gathered} t=\frac{-30\pm\sqrt[]{30^2-4(-2.7)(6.5)}}{2(-2.7)} \\ \\ t=\frac{-30\pm\sqrt[]{900-70.2}}{-5.4} \\ \\ t=\frac{-30\pm\sqrt[]{829.8}}{-5.4} \\ \\ t_1=\frac{-30+\sqrt[]{829.8}}{-5.4}=0.22 \\ \\ t_2=\frac{-30-\sqrt[]{829.8}}{-5.4}=10.89 \end{gathered}[/tex]