Respuesta :

[tex]\begin{gathered} q(x)=-x+2 \\ r(x)=4x+3 \end{gathered}[/tex]

Function composition:

[tex]\begin{gathered} (q\circ r)(x)=q(r(x)) \\ (r\circ q)(x)=r(q(x)) \end{gathered}[/tex]

To find the given:

[tex](q\circ r)(-4)=[/tex]

1. Substitute in the equation of function q(x) the x by the equation of function r(x):

[tex](q\circ r)(x)=-(4x+3)+2[/tex]

2. Simplify:

[tex]\begin{gathered} (q\circ r)(x)=-4x-3+2 \\ (q\circ r)(x)=-4x-1 \end{gathered}[/tex]

3. Evaluate the equation you get in step 2 when x= -4:

[tex]\begin{gathered} (q\circ r)(-4)=-4(-4)-1 \\ (q\circ r)(-4)=16-1 \\ \\ (q\circ r)(-4)=15 \end{gathered}[/tex]

_____________________________--

[tex](r\circ q)(-4)=[/tex]

1.

[tex](r\circ q)(x)=4(-x+2)+3[/tex]

2.

[tex]\begin{gathered} (r\circ q)(x)=-4x+8+3 \\ (r\circ q)(x)=-4x+11 \end{gathered}[/tex]

3.

[tex]\begin{gathered} (r\circ q)(-4)=-4(-4)+11 \\ (r\circ q)(-4)=16+11 \\ \\ (r\circ q)(-4)=27 \end{gathered}[/tex]

Answe:

(