Respuesta :

We will have the following:

[tex]525J=(14kg)(9.8m/s^2)y\Rightarrow y=\frac{525J}{(14kg)(9.8m/s^2)}[/tex][tex]\Rightarrow y=\frac{375}{98}m\Rightarrow y=3.826530612\ldots m[/tex][tex]\Rightarrow y\approx3.8m[/tex]

So, it's heigth is approximately 3.8 meters.