Respuesta :

Given:

[tex]\log_2(x)-\log_2(10)=2[/tex]

Find-:

Value of "x"

Explanation-:

Use the logarithm formula is:

[tex]\log_bM-\log_bN=\log_b(\frac{M}{N})[/tex]

Apply the formula then,

[tex]\begin{gathered} \log_2(x)-\log_2(10)=2 \\ \\ \log_2(\frac{x}{10})=2 \end{gathered}[/tex]

So,

The value of "x" is:

[tex]\begin{gathered} \log_2(\frac{x}{10})=2 \\ \\ \frac{x}{10}=2^2 \\ \\ \frac{x}{10}=4 \\ \\ x=4\times10 \\ \\ x=40 \end{gathered}[/tex]

The value of "x" is 40.