Solve. Show your work.log2 (x) – log2 (10) = 2

Given:
[tex]\log_2(x)-\log_2(10)=2[/tex]Find-:
Value of "x"
Explanation-:
Use the logarithm formula is:
[tex]\log_bM-\log_bN=\log_b(\frac{M}{N})[/tex]Apply the formula then,
[tex]\begin{gathered} \log_2(x)-\log_2(10)=2 \\ \\ \log_2(\frac{x}{10})=2 \end{gathered}[/tex]So,
The value of "x" is:
[tex]\begin{gathered} \log_2(\frac{x}{10})=2 \\ \\ \frac{x}{10}=2^2 \\ \\ \frac{x}{10}=4 \\ \\ x=4\times10 \\ \\ x=40 \end{gathered}[/tex]The value of "x" is 40.