A circuit with a battery, a 10 Ω resistor, and a 11 Ω resistor, in parallel. The total current is the system is 4.4 A. What is the voltage of the battery?

Respuesta :

Given data:

* The current through the circuit is,

[tex]I=4.4\text{ A}[/tex]

* The value of resistances given is,

[tex]\begin{gathered} R_1=10\text{ ohm} \\ R_2=11\text{ ohm} \end{gathered}[/tex]

Solution:

The equivalent resistance of the resistors connected in parallel is,

[tex]\begin{gathered} \frac{1}{R_{eq}}=\frac{1}{R_1}+\frac{1}{R_2} \\ \frac{1}{R_{eq}}=\frac{1}{10}+\frac{1}{11} \\ \frac{1}{R_{eq}}=\frac{11+10}{110} \\ \frac{1}{R_{eq}}=\frac{21}{110} \end{gathered}[/tex]

By simplifying,

[tex]\begin{gathered} R_{eq}=\frac{110}{21} \\ R_{eq}=5.24\text{ ohm} \end{gathered}[/tex]

According to Ohm's law, the voltage across the battery in terms of the current and equivalent resistance is,

[tex]\begin{gathered} V=IR_{eq} \\ V=4.4\times5.24 \\ V=23.06\text{ volts} \end{gathered}[/tex]

Thus, the voltage across the battery is 23.06 volts.