Respuesta :

Given the function:

[tex]h(x)=-3x^3-2x^2-8x-2[/tex]

Let's use the rational zeros theorem to list all possible rational zeros of the given polynomial.

To use the rational roots theorem we have:

[tex]\pm\frac{p}{q}[/tex]

Where p is a factor of the constaant (last term).

q is a factor of the leading coefficient,

Thus, we have:

p: Factors of -2 = ±1, ±2

q: Factors of -3 = ±1, ±3

The rational zero will be every combination of ±p/q.

Thus, we have:

[tex]\begin{gathered} \pm\frac{p}{q}=\pm\frac{1}{1},\pm\frac{1}{3},\pm\frac{2}{1},\pm\frac{2}{3} \\ \end{gathered}[/tex]

Simplify:

[tex]\pm\frac{p}{q}=\pm1,\pm\frac{1}{3},\pm2,\pm\frac{2}{3}[/tex]

Therefore, the list of all possible rational zeros are:

[tex]\pm1,\pm\frac{1}{3},\pm2,\pm\frac{2}{3}[/tex]

ANSWER:

[tex]\pm1,\pm\frac{1}{3},\pm2,\pm\frac{2}{3}[/tex]