Respuesta :

we have the equation

[tex]n^3+n^2-2n=0[/tex]

step 1

Factor n

so

[tex]n\lbrack n^2+n-2\rbrack=0[/tex]

Solve the quadratic equation, using the formula

we have

a=1

b=1

c=-2

substitute

[tex]n=\frac{-1\pm\sqrt[\square]{(1^2)-4(1)(-2)}}{2(1)}[/tex][tex]\begin{gathered} n=\frac{-1\pm\sqrt[\square]{9}}{2} \\ \\ n=\frac{-1\pm3}{2} \end{gathered}[/tex]

the values of n are

n=1 and n=-2

therefore

[tex]n^3+n^2-2n=n(n+2)(n-1)[/tex]

the values of n are

n=0

n=-2

n=1