Respuesta :

we have the expression

[tex]secxsin(\frac{\pi}{2}-x)[/tex]

Remember that

[tex]sin(A-B)=sinAcosB-cosAsinB[/tex]

therefore

[tex]\begin{gathered} sin(\frac{\pi}{2}-x)=sin\frac{\pi}{2}cosx-cos\frac{\pi}{2}sinx \\ \\ sin(\frac{\pi}{2}-x)=cosx \end{gathered}[/tex]

substitute in the given expression

[tex]\begin{gathered} secx(cosx) \\ (\frac{1}{cosx})cosx \\ 1 \end{gathered}[/tex]

The answer is 1