pa18
contestada

Part 1.] Which of the following is the inverse of the given function?
[tex]y= 3 x^{5}-4[/tex]
A.] [tex]y= \sqrt[5]{ \frac{x+3}{4}} [/tex]
B.] [tex]y= \sqrt[5]{ \frac{x-4}{3}} [/tex]
C.] [tex]y= \sqrt[3]{ \frac{x+4}{5}} [/tex]
D.] [tex]y= \sqrt[5]{ \frac{x+4}{3}} [/tex]

Part 2.] What is the inverse of the function [tex]y=3 e^{-4+1} [/tex]?
A.] [tex]y= \frac{1-log(x-3)}{4} [/tex]
B.] [tex]y= \frac{1-log( \frac{x}{3})}{4} [/tex]
C.] [tex]y= \frac{1-ln(x-3)}{4} [/tex]
D.] [tex]y= \frac{1-ln( \frac{x}{3})}{4} [/tex]

Respuesta :

1. I believe the answer is D, y = fifth root of (x+4)/3
y = 3x⁵ - 4
Interchanging x and y
x = 3y⁵ - 4
solving for y in the equation; x=3y⁵-4
y = ((x+4)/3)^1/5

= ((x+4)/3)^1/5

2. inverse of the equation y = 3e^-4x+1
I think the answer is D; 
Interchanging the variables x and y 
 x= 3e^-4y-1
Solving for y in x = 3e^-4y +1
y= -(In(x/3)-1)/4
  = (1-In(x/3))/4